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Abstract
In a paper published in Am. Math. Mon. (1966 73 1–23), Kac asked his famous
question ‘Can one hear the shape of a drum?’. Gordon et al answered this
question negatively by constructing planar isospectral pairs in their paper
published in Invent. Math. (1992 110 1–22). Only a finite number of pairs
have been constructed till now. Further in J. Phys. A: Math. Gen. (2005 38
L477–83), Giraud showed that most of the known examples can be generated
from solutions of a certain equation which involves certain involutions of an
n-dimensional projective space over some finite field. He then generated all
possible solutions when n = 2. In this letter we handle all dimensions, and
show that no other examples arise.

PACS number: 02.10.Ox
Mathematics Subject Classification: 37J10, 37N20, 43A85, 05B20, 05B25

1. Shape and sound of drums, according to Kac

In [6], M Kac formulated his famous question ‘Can one hear the shape of a drum?’.
Formally, this question amounts to finding planar isospectral pairs—non-isometric planar
simply connected domains for which the sets {En ‖ n ∈ N} of solutions of the stationary
Schrödinger equation

(� + E)� = 0

with �|Boundary = 0 are identical. Any example of such a pair of non-congruent planar
isospectral domains yields a counter example to Kac’s question.

Several counter examples were constructed to the analogous question on Riemannian
manifolds—see, e.g., R Brooks [1]—but for Euclidian domains, that is, domains constructed

1 The author is a Postdoctoral Fellow of the Fund for Scientific Research—Flanders (Belgium).

0305-4470/06/230385+04$30.00 © 2006 IOP Publishing Ltd Printed in the UK L385

http://dx.doi.org/10.1088/0305-4470/39/23/L02
mailto:kthas@cage.UGent.be
http://stacks.iop.org/JPhysA/39/L385


L386 Letter to the Editor

in the Euclidian affine plane R
2 the question appeared to be a challenge for a long time period.

Finally, C Gordon, D Webb and S Wolpert provided a pair of simply connected non-isometric
Euclidian isospectral domains (which we will call ‘planar isospectral pairs’ or ‘isospectral
billiards’ in this letter) in their seminal paper ‘Isospectral plane domains and surfaces via
Riemannian orbifolds’ [4].

After opus citatum, other examples were found by various people—see especially the
paper of P Buser, J Conway, P Doyle and K-D Semmler [2]—but essentially only a finite
number of planar isospectral pairs are known at present.

Starting from a certain set of data in a projective space of dimension n � 2 over a finite
field GF(q) with q elements, which we will call ‘projective isospectral data’, O Giraud [3]
derives an equation that yields candidates for generating isospectral billiards. For n = 2, he
solves the equation, and generates, by computer, all isospectral billiards that can arise.

In this letter, we classify all isospectral billiards that arise from projective isospectral data
in any dimension, as described in the next section. Only the examples generated by Giraud
arise eventually.

2. Projective isospectral data

In [3], O Giraud studies triples (P, {θ(i)}, r), where P is a finite projective space of dimension
at least 2 [5], and {θ(i)} a set of r non-trivial involutory automorphisms of P, satisfying the
following equation

r(|P| − Fix(θ)) = 2(|P| − 1), (1)

for some natural number r � 3, where Fix(θ) = Fix(θ(i)) is a constant number of fixed points
of P under each θ(i), and |P| is the number of points of P. Call the triple (P, {θ(i)}, r) as above
projective isospectral data.

The involutions θ(i) have a certain permutation matrix representation M(i), and given a
triple as above, the incidence matrix T of P yields a ‘transplantation matrix’ (see [3]). If
certain extra conditions on the M(i) are satisfied, non-isometric planar isospectral pairs can
be generated, each consisting of |P| copies of an r-sided polygonal base tile (see [3]). (For a
pair of isospectral billiards on N copies of a tile with r sides, one needs r involutions acting
on a set of N points with the property that the graph formed by joining each pair of points
that are interchanged by at least one of the involutions has no loops and is connected. For any
involution the number of edges is (N − s)/2, with s being the number of fixed points of the
involution. The total number of edges must equal N − 1, and the group of transformations
generated by the involutions must act transitively on the set of N points.)

For projective spaces of dimension 2—in other words projective planes—Giraud
determined all solutions of equation (1), and showed that all examples of [2] can be generated
by computer from the data obtained.

In a finite axiomatic projective plane, involutions can occur with a different number of
fixed points. Indeed, if we consider, for example, the Desarguesian plane PG(2, q2) (see
the next section for a definition), then there are Baer involutions (also described in the next
section), which have precisely q2 + q + 1 fixed points, and linear involutions, which have
q2 + 1 + δ(q) fixed points, where δ(q) = 1 if q is odd, and δ(q) = 0 if q is even. However, O
Giraud only considers involutions with the same number of fixed points, explaining the nature
of the generalization considered in this letter. Involutions with a different number of fixed
points will be handled in a subsequent paper (see also the final remark of the present letter).

In the next section, we solve equation (1) for any finite dimensional projective space over
a finite field, and show that the solutions do not give rise to new examples.
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3. Classification of planar isospectral pairs with projective isospectral data

Denote by PG(n, q), n ∈ N ∪ {−1}, the n-dimensional projective space over the Galois field
GF(q) with q elements (q a prime power); we have |PG(n, q)| = qn+1−1

q−1 . Note that PG(−1, q)

is just the empty space.
We handle several cases of fixed points structures of involutions in the automorphism

group PΓL(n + 1, q) of PG(n, q), according to Segre’s classification [7].

3.1. Baer involutions

First suppose that θ is a Baer involution, that is, θ is not contained in the linear automorphism
group of the space, so that q is a square, and θ fixes an n-dimensional subspace over GF(

√
q)

pointwise. It is convenient to denote P by PG(n, q2) in this case, and the elementwise fixed
space of θ by PG(n, q) for obvious reasons. Then (1) becomes

r

(
q2(n+1) − 1

q2 − 1
− qn+1 − 1

q − 1

)
= 2

(
q2(n+1) − 1

q2 − 1
− 1

)
.

Whence

r(q2(n+1) − qn+2 − qn+1 + q) = 2(q2(n+1) − q2).

It is clear that if n � 2 and r � 3, the latter expression does not have natural solutions. For, if
one subtracts the right-hand side from the left-hand side, one obtains

q(qn − 1)[(r − 2)(qn+1 − 1) − 2(q + 1)],

and since r � 3 and q � 2, we then have

(r − 2)(qn+1 − 1) − 2(q + 1) � (r − 2)(q3 − 1) − 2(q + 1) � q3 − 2q − 3 � 1.

3.2. Linear involutions in even characteristic

If q is even, and θ is not of Baer-type, θ must fix an m-dimensional subspace of PG(n, q)

pointwise, with 1 � m � n � 2m + 1. We obtain

r

(
qn+1 − 1

q − 1
− qm+1 − 1

q − 1

)
= 2

(
qn+1 − 1

q − 1
− 1

)
,

implying

r(qn+1 − qm+1) = 2(qn+1 − q).

Clearly, qm+1 divides 2q, so m = 1 = q − 1, and the only solution is given by n = 2 and
r = 3. Examples of this type can be found in [2, 3].

3.3. Linear involutions in odd characteristic

If θ is a linear involution of PG(n, q), q odd, the set of fixed points is the union of two
disjoint complementary subspaces. Denote these by PG(k, q) and PG(n − k − 1, q), k �
n − k − 1 > −1. We suppose n > 2 since n = 2 is handled in [3]. We have to solve

r

(
qn+1 − 1

q − 1
− qk+1 − 1

q − 1
− qn−k − 1

q − 1

)
= 2

(
qn+1 − 1

q − 1
− 1

)
,

or

(r − 2)qn+1 + r + 2q = r(qk+1 + qn−k). (2)
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Noting that qn+1

2 > qn−k + qk+1, an inductional argument on r � 4 leads to insolvability.
Put r = 3, and note that q divides r. Then q must equal 3, and (2) is simplified to

3n+1 + 3 + 6 = 3(3k+1 + 3n−k),

and clearly n − k = 1.
Consider three involutions θ(i) in PGL(n + 1, 3) (of PG(n, 3)), n � 3, with axis a

hyperplane and centre a point. When the data (PG(n, 3), {θ(i)}, 3) would generate planar
isospectral pairs, we have to know that the latter are simply connected. One observes that this
implies that 〈θ(1), θ (2), θ (3)〉 is a subgroup of PGL(n + 1, 3) acting transitively on the points
of PG(n, 3). But as n > 2, the axes of θ(1), θ (2), θ (3) intersect non-trivially, so that each point
of this intersection is fixed by 〈θ(1), θ (2), θ (3)〉, contradiction.

The main theorem is proved. �

4. Final remark

At present, the author is developing a general theory on planar isospectral pairs arising from
incidence isospectral data, that is, from sets of involutory automorphisms with not necessarily
the same fixed elements structure, of finite projective spaces and more general incidence
geometries [8].
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